If it's not what You are looking for type in the equation solver your own equation and let us solve it.
u^2+4u-8=0
a = 1; b = 4; c = -8;
Δ = b2-4ac
Δ = 42-4·1·(-8)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{3}}{2*1}=\frac{-4-4\sqrt{3}}{2} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{3}}{2*1}=\frac{-4+4\sqrt{3}}{2} $
| 1.5x+x=850 | | -18p+(-6p)-(-5p)=19 | | s^2+8s=15 | | -7x-8=-15 | | 4b-19=b+3b-2b,b | | 5c-c-6c+(-15c)=-17 | | 9p^2=-63p | | 4(3^(5-x))=32 | | 2(w+1)+1=9 | | 3x+11+2x-10=180 | | .666x-7=9 | | -2/r=2 | | 21/3x=340 | | 19x-7=13x-19 | | 1-6p+8p=3p-7 | | 6u+u+2u=18 | | 3/x^2=8x/9 | | 1x+14/13=12/13x | | 52+4n=140n= | | 4x+32=8x-7 | | 4(g+3)+3=19 | | 9x^2-21x+9=-9 | | 6z+5/4=7z+7/4 | | 3y2+6y+9=0 | | 0.75+0.15(20)=0.5(x+20) | | 16w-12w-(-8)=-16 | | 6•y+4=y-11 | | 65+3n=335n= | | -3(n+8)+(-9)=-3 | | -3(4x=3)=4(6x+1)=43 | | 40+1/3x+(x-10)+(x-20)=350 | | 6k-3k-3=15 |